
2011 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM

AUGUST 9-11 DEARBORN, MICHIGAN

RAYTHEON COE: MIDDLEWARE ENABLING THE TACTICAL PLUG AND
PLAY FRAMEWORK

Al Stuessy

Combat Systems
Raytheon
Plano, TX

ABSTRACT

The Raytheon Common Operating Environment (RTN-COE) is a TRL-9 level integrated real-time

operating environment that has been utilized in 40 plus Army, Navy, and Air Force programs. RTN-COE was

created in 2000-2001 as an open architecture instantiation of the US Army’s Weapons Systems Technical

Architecture Working Group (WSTAWG) Operating Environment API and has since been propagated

throughout the company. This paper will describe the evolution RTN-COE and specifically how RTN-COE is a

key enabler of the Raytheon Tactical Plug-and-Play Framework that meets the low latency requirements

associated with closed-loop operations with sensors, while also providing a gateway to the C2 applications

within this framework. Finally this paper will elaborate upon the design considerations addressed by RTN-

COE that have enabled it to: facilitate digital backbone integration, maximize scalability, enable multi-

company software integration to shared processors, and promote software reuse and portability.

INTRODUCTION

The concept of middleware has been and continues to be a

long-standing approach to solving several problems in the

application software domain. The use of middleware at

Raytheon and in industry as a whole is now accepted as a

standard practice. However, the actual middleware products

used in industry and even inside Raytheon are many and

varied. Some organizations develop custom middleware on

a program-by-program basis, while others adopt commercial

products to meet their needs. This is precisely the issue that

we ran into at Raytheon in the 1990-2000 timeframe. Just

within the Texas region of Raytheon we experienced a

situation where almost every new program was creating its

own custom middleware solution. This created issues on a

number of levels including: the inability to reuse code, the

extra scope required to develop middleware on a program

basis, the need to re-train engineers on how to use the new

middleware, and the need to maintain the new middleware

once it was created. These provided the impetus for creating

a single middleware solution that could be used to address

these issues – the Raytheon COE.

This paper will describe the evolution of the Raytheon

COE, its role in enabling the Tactical Plug and Play

Framework, the design attributes that are addressed by this

product, and its use in multi-company integration efforts.

EVOLUTION

 The US Army WSTAWG organization, of which

Raytheon was involved with since its inception, developed

an operating environment API specification during the 1997-

2005 time period. WSTAWG came into being in 1997 to

address the Army’s problem of dealing with proliferating

middleware approaches and hardware/software

obsolescence. To the Army’s perspective, seemingly every

contractor was inventing their own custom middleware

solution and there was little to no software reuse going on

between programs. (Very similar problems to what we were

experiencing inside of Raytheon.) In addition, the

development of the WSTAWG API specification allowed

the Army to mandate the use of middleware on future

contracts to mitigate against the problems of COTS

hardware and software obsolescence. This broad

specification is still included as part of the JTA-Army.

As an outcome of Raytheon’s participation in the

WSTAWG standards body and the need to stop the

proliferation of internal middleware products, the Raytheon

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Raytheon COE: Middleware Enabling the Tactical Plug and Play Framework, Stuessy.

Page 2 of 5

COE was developed in 2000-2001. The business case at that

time for the creation of RTN-COE was Raytheon’s

participation on the Future Scout/TRACER vehicle

development program. Raytheon, as a key subcontractor to

BAE, had the role of Vetronics integrator for the

demonstration vehicle. In that role, Raytheon in conjunction

with BAE agreed that the Vetronics architecture would

adhere to the WSTAWG standard and that the Raytheon

COE would be the instantiation of the standard that would

be used for the integrating the vehicle.

Although the eventual fate of the Future Scout/TRACER

program was cancellation, the use of RTN-COE on this

program was quite successful. The RTN-COE served as the

backbone of the Lancer team demonstration vehicle (Figure

1) which made it through user trials in England successfully

in 2003. To successfully integrate this vehicle required 1.5

million lines of code, 81 software engineers, and 12

development teams spread across two countries.

Figure 1: Future Scout Demonstration Vehicle - 2003

In 2001, just as RTN-COE was beginning to be used as the

backbone of the Future Scout/TRACER program, the 9/11

tragedy occurred which spurred on the development of new

drone programs such as the Predator (Figure 2). Raytheon

had a key subcontracting role for General Atomics as the

sensor developer for the Predator. That sensor, the Multi-

Spectral Targeting System (MTS), required a software

infrastructure product to facilitate the integration of its

software and hardware subsystems. The RTN-COE was

chosen to fill that role. This provided the first opportunity to

leverage RTN-COE as a software reuse enabler, as RTN-

COE was used to facilitate the reuse of a Feature-based

Tracker software component from the Line of Sight Anti-

Tank (LOSAT) program to run within the Predator platform.

Leveraging the fact that both LOSAT and Predator were

running RTN-COE as a backbone infrastructure, this

Tracker was operational in one month, through flight tests in

two months, and in combat with Hellfire missiles in 4

months. Since 2001, an entire Raytheon drone sensor

product line for the Air Force, Army, Navy, and CIA has

sprouted from this initial success. The RTN-COE is running

in each of these now more than 20 programs.

Figure 2: Predator / MTS - 2001

During 2006, a cross-company initiative focused on

software reuse was initiated from the Raytheon Missile

Systems division. The objective of this initiative was to

identify a common software infrastructure that could be used

across new missile development programs within Raytheon.

As a part of this effort a trade study was launched to

determine whether this common infrastructure should be a

Raytheon internal product or an available COTS product.

The result of this trade study was that RTN-COE was

selected over multiple COTS products for several reasons

including: real-time performance, usability, availability of

source code, and cost. Following this trade study, RTN-

COE was successfully utilized on a pilot program – Small

Diameter Bomb II. Subsequent to that success, use of the

RTN-COE has proliferated into many other missile

programs including: JAGM (Figure 3), SM-3, KEI, MRM,

AMRAAM, and Maverick.

Figure 3: JAGM – 2010

ENABLING THE TACTICAL PLUG AND PLAY

FRAMEWORK

As a continued part of the evolution of the RTN-COE, we

became aware of the need to think in bigger terms. RTN-

COE served the infrastructure framework portion of the

problem well, but we were seeing the need for something

more – a comprehensive architecture framework that

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Raytheon COE: Middleware Enabling the Tactical Plug and Play Framework, Stuessy.

Page 3 of 5

addressed the integration of Command and Control, C4ISR,

and other electronics packages with crew stations. This was

the impetus behind the creation of the Tactical Plug and Play

Framework – a series of loosely-coupled sub-frameworks

(Presentation, Sensor Control, Command and Control, and

Communications) that tie together across a digital backbone

to provide a cohesive vehicle integration solution.

Figure 4: Tactical Plug and Play Framework

As shown in Figure 4, the RTN-COE enables the Tactical

Plug and Play Framework by integrating the real-time

Sensor Control framework with the other frameworks. The

communication between the applications within the

framework takes advantage of RTN-COE’s

publish/subscribe messaging capability which transfers data

independently of the hardware and network topology. RTN-

COE, however, does not underpin all of the sub-frameworks

within the architecture as evidenced by the C2 framework

which is based on Service Oriented Architecture (SOA).

The architecture is defined this way because the most

popular C2 applications are written to work with SOA

infrastructures. To seamlessly integrate the C2 framework

with the rest of the architecture, a SOA Gateway was

developed. The SOA Gateway is necessary to bridge

communication between the RTN-COE middleware and

whatever native SOA infrastructure is being used to support

the C2 Framework. The SOA Gateway adapts application

message interfaces from their Standard COE Interface (SCI)

format to an industry standard interface definition format

that is more compatible with SOA called ICD 101.

In realizing a productized implementation of the Tactical

Plug and Play architecture, another product named the

Integrated Mission System-Platform (IMS-P) was born. The

IMS-P (Figure 5) is a tactical open standards-based C4ISR

system integration product that enables integration of

discrete systems into a common framework. The IMS-P

provides the “digital integration backbone” consisting of

both software and hardware components that enables sharing

of information between users on the same vehicle platform

and between vehicle platforms over a tactical network. The

software portion of IMS-P facilitates the creation of crew

station Graphical User Interfaces (GUIs) and their

integration with processing electronics and other associated

software applications. The hardware portion of IMS-P

hardware consists of the computers, displays, and

networking equipment needed to integrate discrete systems

together with vehicle user interface(s). RTN-COE is used as

the infrastructure within the IMS-P that ties together all of

the software components on the digital backbone.

Figure 5: Integrated Mission System-Platform

DESIGN ATTRIBUTES

Many attributes have driver both the initial design and

upgrades to the RTN-COE over the past 11 years. These

attributes include:

 Real-Time Performance – means the ability to

address the performance constraints of real-time

embedded systems. This attribute was important

because Raytheon’s Texas region primarily

produces Electro-Optical and Radar sensors - types

of products whose software content is

microprocessor-based and subject to real-time

constraints (33 msec or less).

 Scalability - means the ability of the middleware to

run within a variety of processors from desktop

computers to single board computers to digital

signal processors (DSPs). This led our

development team down the path of creating a

single “core” for the product that could be deployed

across the entire range of supported platforms

instead of creating multiple “cores” or “editions” of

the product. We wanted to design the product so

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Raytheon COE: Middleware Enabling the Tactical Plug and Play Framework, Stuessy.

Page 4 of 5

that it could scale to run within a $5 DSP just the

same as it could run on a multiprocessor board

costing tens of thousands of dollars (Figure 6).

Figure 6: RTN-COE is designed for Scalability

 Usability – means providing a product that is easy

for developers and integrators to use. This attribute

manifested itself in the design of the product

through both its APIs and internal architecture. As

an example of this, when RTN-COE was ported to

C++, an abstract API was created on top of

WSTAWG which took advantage of features within

C++ that decreased the number of lines of code that

developers needed to write, therefore increasing

their productivity.

 Interoperability - means the ease with which

software and systems that utilize the RTN-COE

would be able to communicate with each other.

Examples of actions that we took in the design to

address this attribute were the adoption of the

standard WSTAWG wire protocol for message

transfers and the addition of a RTN-COE standard

Proxy service to interface to external components

not running on the RTN-COE.

 Portability – means the ability to run software

applications on the RTN-COE that can be moved

from processor type to processor type or from

operating system to operating system without

modifying the application source code. Realizing

this attribute was considered highly important as it

would enable host-based testing of applications and

most importantly would provide protection for the

software applications from the obsolescence of the

processor hardware and operating system software

upon which they run within production systems.

 Testability – means the ease with which developers

can test their components and systems using the

RTN-COE. The need to address this attribute led to

the addition of integration tools to the RTN-COE

product. These tools include the COE Message

Injection Tool (CMIT) and the COE Image

Injection Tool (CIIT). These tools have been used

on multiple programs and have increased developer

productivity through facilitation of repeatable and

automated testing of software and firmware

components. CMIT (Figure 7) provides the ability

to inject message data into and to capture

instrument data from a RTN-COE-based system.

Figure 7: COE Message Injection Tool

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Raytheon COE: Middleware Enabling the Tactical Plug and Play Framework, Stuessy.

Page 5 of 5

MULTI-COMPANY INTEGRATION

 To enable RTN-COE to function in the role of a multi-

company integration middleware, the approach by which

application data is defined for transmission within a system

has changed since the inception of RTN-COE. Originally,

all data to be transmitted by the RTN-COE was defined in

terms of C/C++ source code header files or Ada packages.

That approach worked on Future Scout/TRACER, but

required hundreds of hours of developer labor to write the

source code that defined the data for a large system. To

optimize the entire data definition process including the

amount of labor spent upon defining data, we added the

ability to define system data using XML for the RTN-COE.

To accomplish this we defined an XML Schema and a tool

to parse the XML that we called the COE Message

Automation Tool (CMAT) in 2006.

 CMAT was designed to parse the developer’s input XML

data definitions and to generate source code in C, C++, C#

or Ada from the input. This output source code is then

compiled with the application into binary structures that are

passed between applications. For efficiency reasons, ASCII

XML is not transmitted between components or across the

wire.

 This approach of using data defined in XML and

processed by CMAT into source code data representations is

one that we have deployed across two multi-company

integration efforts – FCS GSI and VIVID. With this

approach, as illustrated in Figure 8, the system’s XML

becomes the artifact that is under configuration control – not

the source code. For example, if Vendor X is supplying an

INS component to the system, a set of XML is written that

defines the interfaces to that component. That XML is then

utilized by the software build process of everyone that needs

to integrate with the INS including Vendor X.

 This idea, once adopted and embraced by the all the

software engineers, system engineers, and suppliers, worked

well to successfully facilitate both the development and

integration efforts on these programs.

Figure 8: Multi-Company Integration with XML

CONCLUSION

At Raytheon, through our experience in middleware

development and involvement with the US Army WSTAWG

organization, we have proven that a single middleware

product can be successfully applied to a variety of military

programs. We have taken something that originated with

WSTAWG and successfully propagated it for use on over 40

programs within Raytheon. We have also built upon these

efforts to create a more encompassing integration solution

called the Tactical Plug and Play Framework. RTN-COE

enables this Framework by tying together the various sub-

frameworks contained within the Framework into a cohesive

whole. This Framework has since been realized in an

implemented product called IMS-P. The IMS-P exists today

and has been deployed upon several demonstration vehicles.

